Intermediate SSH Workshop Notes

These notes are based on OpenSSH htips://www.openssh.org, installed by default (or readily available) on
most platforms (macOS, Linux and Windows). The commands will (mostly) work on the command line for

all platforms (Bash, zsh and PowerShell).
Topics:

Principles of public key (asymmetric key) cryptography
Key Generation and Management

Connecting by SSH

Using SSH Keys with GitLab and GitHub

L=

1. Principles of public key (asymmetric key) cryptography

This will be covered at the start of the workshop, the most accessible online source is (somewhat
unfortunately) Wikipedia:

1. Public-key cryptography hiips://en.wikipedia.org/wiki/Public-key cryptography

2. Man-in-the-middle attack https://en.wikipedia.org/wiki/Man-in-the-middle attack

A very good book for further reading is Simon Singh's The Code Book https://simonsingh.net/books/the-

code-book which is also available from the University Library
https://tewaharoa.victoria.ac.nz/permalink/64VUW INST/k63216/alma995075654002386.

2. Key Generation and Management

OpenSSH keeps its user filesat ~/.ssh (the ~ means "the user's home directory"). Find the contents
of this directory with, for example,

1ls ~/.ssh

There should already be some files, for example:

https://www.openssh.org/
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://simonsingh.net/books/the-code-book
https://tewaharoa.victoria.ac.nz/permalink/64VUW_INST/k63216/alma995075654002386

$ 1s -1 ~/.ssh
authorized_keys
config
id_ed25519
id_ed25519.pub
known_hosts

Creating a New SSH Key Pair
If you don't have a SSH public/private key pair (the id_* files in the example above) then create using:

» ssh-keygen to generate the key pair,
« -t option to select the type of key to create,
e —C option to provide a custom comment.

Example:

$ ssh-keygen -t ed25519 -C "your.email@vuw.ac.nz"

Generating public/private ed25519 key pair.

Enter file in which to save the key (/Users/username/.ssh/id_ed25519):

Enter passphrase for "/Users/username/.ssh/id_ed25519" (empty for no passphrase):
Enter same passphrase again:

Your identification has been saved in /Users/username/.ssh/id_ed25519

Your public key has been saved in /Users/username/.ssh/id_ed25519.pub

The key fingerprint is:

SHA256 : hxyOwoMpkAGF c31ce+hEvyxCKMxygom2I8hpBjY7c7E your.email@vuw.ac.nz

The key's randomart image 1is:

+--[ED25519 256]--+

|+0.0 .0 I

|==0.0. + I

IB=+.. + + I

l+o0 * o * + I

l++0.= + S . I

[*.= o+ . I

lo@ E I

|+ = I

I I
+----[SHA256]----- +

It's wisest to enter a passphrase for your SSH key, and it's best if it's different from your login password.

Warning: if you're prompted

/Users/username/.ssh/1d_ed25519 already exists.
Overwrite (y/n)?

then don't choose y to overwrite an existing key pair unless you're sure you no longer need the existing
key pair

Changing the Passphrase or Comment

It's possible to change the passphrase and comment of an existing private key:

e —p option changes the passphrase;
e« -c option changes the comment

of an existing private key file

Example:

$ ssh-keygen -p

Enter file in which the key is (/Users/username/.ssh/id_ed25519):
Enter old passphrase:

Key has comment 'your.email@vuw.ac.nz'

Enter new passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved with the new passphrase.

Fingerprints
Check fingerprints (via another channel) whenever practicable! Use:

« ssh-keygen -1 to outputthe fingerprint,
« -E option to specify a hash algorithm other than the default,
« —f option to specify a target file.

Example: showing the MD5 fingerprint of a user's key

$ ssh-keygen -E md5 -1 -f ~/.ssh/id_ed25519.pub
256 MD5:02:f3:54:b1:6a:b7:9b:87:a5:be:aa:2d:6c:c6:0b:f7 your.email@vuw.ac.nz (ED255]

When verifying a fingerprint, you may need to specify the hash algorithm to match the fingerprint presented.

SSH Agent

Up to this point, ssh will request your private key passphrase on every use, which quickly becomes
tiresome. Fortunately, theres a service called ssh-agent which will hold private keys for authentication.

Adding

The command to add a private key to the agent is:

ssh-add

which will prompt for the passphrase of the private key (see Starting ssh-agent below if this doesn't work).
After entering the passphrase once, it won't need to be entered again for the duration of the session.

The plain ssh-add command will add every SSH key in ~/.ssh/ tothe agent. To add a specific key,
specify the path to the private part of the key, for example:

ssh-add ~/.ssh/id_ed25519

You can check which identities are stored in the agent by using the -1 flag

$ ssh-add -1
256 SHA256 : hxyOwoMpkAGFc31ce+hEvyxCKMxygom2I8hpBjY7c7E your.email@vuw.ac.nz (ED2551¢

Usethe -E flag to specify the hash algorithm used when displaying key fingerprints.

ssh-add; ssh-add -E md5 -1

Starting ssh-agent

If you receive an error message

$ ssh-add
Could not open a connection to your authentication agent.

then you'll need to start ssh-agent. On macOS and Linux this can be accomplished with:

eval $(ssh-agent)

On Windows you'll need to enable ssh-agent and start the service, see the PowerShell instructions in the
appendix Installing OpenSSH on Windows.

3. Connecting by SSH

Thus far everything has been local, but the purpose of SSH is to connect to remote hosts.

Connecting to a Remote Host

Hosts have SSH keys, just like users. The location of these keys is (unfortunately) platform-dependent, on
macOS and Linux the host keys are typically found in /etc/ssh/ .

$ 1s /etc/ssh/

moduli ssh_host_ed25519_key
ssh_config ssh_host_ed25519_key.pub
ssh_config.d ssh_host_rsa_key
ssh_host_dsa_key ssh_host_rsa_key.pub
ssh_host_dsa_key.pub sshd_config
ssh_host_ecdsa_key sshd_config.d

ssh_host_ecdsa_key.pub

Find a host's fingerprint by running ssh-keygen -1 , for example:

$ ssh-keygen -E md5 -1 -f /etc/ssh/ssh_host_ecdsa_key.pub
256 MD5:d6:0a1:72:ce:70:38:14:64:55:b8:5e:35:06:cd:34:cb username@®host (ECDSA)

$ ssh-keygen -E md5 -1 -f /etc/ssh/ssh_host_ed25519_key.pub
256 MD5:35:ee:49:al:6c:ec:3d:ec:a4:cd:89:f5:a9:6c:f9:a0 username@host (ED25519)

When first connecting to a host, ssh will prompt for fingerprint verification. For example, connecting to
Raapoi for the first time:

$ ssh username@raapoi.vuw.ac.nz

The authenticity of host 'raapoi.vuw.ac.nz (130.195.19.126)' can't be established.
ED25519 key fingerprint is SHA256:f+rhB7q5nt/HxcNK3gA8UfSdSI7J05L1dU4C2fslkxg.
This key is not known by any other names.

Are you sure you want to continue connecting (yes/no/[fingerprint])?

It's important to verify the fingerprint to avoid falling victim to a machine-in-the-middle attack. The Raapoi
Cluster Documentation https://vuw-research-computing.github.io/raapoi-docs/accessing_the cluster/#ssh-

clients has the fingerprint and advises:

The first time an SSH client connects to the server, it displays the servers public key fingerprint. An
SSH host key identifies the server to your ssh client. They are an important security feature and not
something you should just hit ENTER to accept.

https://vuw-research-computing.github.io/raapoi-docs/accessing_the_cluster/#ssh-clients

If you have physical (or other) access to the host you're connecting to by SSH then you can generate the
host key fingerprint on the command line with the commands above. Once satisfied with the authenticity of
the host public key presented, enter yes , after which a password will be requested:

$ ssh username@raapoi.vuw.ac.nz

The authenticity of host 'raapoi.vuw.ac.nz (130.195.19.126)' can't be established.
ED25519 key fingerprint is SHA256:f+rhB7q5nt/HxcNK3gA8UfSdSI7J05L1dU4C2fslkxg.

This key is not known by any other names.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added 'raapoi.vuw.ac.nz' (ED25519) to the 1list of known hosts.
username@raapoi.vuw.ac.nz's password:

Known Hosts

When a host's public key authenticity is verified, i.e. yes is entered to the query above, the public key is
addedto ~/.ssh/known hosts as indicated in the command output. This file is a plain text file
containing host names (or IP addresses if there's no host name) followed by the public key.

To see the fingerprints of all public keys in known hosts , use the ssh-keygen command:

256 SHA256:f+rhB7gq5nt/HxcNK3gA8UfSdSJ7105L1dU4C2fslkxg raapoi.vuw.ac.nz (ED25519)
256 SHA256: jg@wcBnkXxm1DORxgBmmON9KApaMXgbcWGnuDKnomlw gitlab.ecs.vuw.ac.nz (ED2551¢
256 SHA256:p2QAMXNICITIYWeIOttrVc98/R1BUFWuU3/LiyKgUfQM github.com,20.248.137.48 (ECL
256 SHA256:+D1iY3wvvV6TulJhbpZisF/zLDA@zPMSvHdkr4UvCOqU github.com (ED25519)

ssh-keygen provides a couple of options for maintaining the known hosts file:

e -F <host> option will search known_ hosts for entries for <host>
e -R <host> option will delete entries for <host> from known hosts

Examples:

$ ssh-keygen -F raapoi.vuw.ac.nz
Host raapoi.vuw.ac.nz found: line 1
raapoi.vuw.ac.nz ssh-ed25519 AAAAC3NzaCl1ZDIINTESAAAAIPtbS1i7YWx0SQ24cF83pyQa@CwIVzLG(

$ ssh-keygen -R raapoi.vuw.ac.nz

Host raapoi.vuw.ac.nz found: line 1
/Users/username/.ssh/known_hosts updated.

Original contents retained as /Users/username/.ssh/known_hosts.old

Setting-up Public Key Authentication

Up to now it's been possible to connect to a remote host with password, but who needs the toil of entering a
password? We can eliminate this friction from SSH connections by setting-up public key authentication
(which is more secure than password authentication).

Authorised Keys

~/.ssh/authorized keys are the public keys of key pairs which are allowed to authenticate for this
user. Adding a public keyto ~/.ssh/authorized keys allows a remote user to authenticate to the
account without password, i.e. by public key authentication.

Now, we have a key distribution problem.

We can manually copy keys (below), but on Bash or zsh it's more convenient to use a utility called ssh-
copy-id

ssh-copy-id is a script that uses ssh to log into a remote machine... By default it adds the keys by
appending them to the remote user's ~/.ssh/authorized keys

Example:

ssh-copy-id username@raapoi.vuw.ac.nz

/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: ssh-add -L
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted r
username@raapoi.vuw.ac.nz's password:

Note the automatic use of ssh-agent by this command.

Manually Copying Keys
On Windows a PowerShell command can be run to copy the local public key to the remote host

» Windows 10 OpenSSH Equivalent of ssh-copy-id htips://chrisjhart.com/Windows-10-ssh-copy-id

Similarly, it's possible to manually copy a key on Bash or zsh with a command

» Easiest way to copy ssh keys to another machine? https://askubuntu.com/questions/4830/easiest-way-

to-copy-ssh-keys-to-another-machine

Connecting from Outside the University

Sometimes we don't have direct access to the remote host, we need to connect to a gateway first.

All staff: Connecting your local machine to the University VPN will allow a direct SSH connections to the
remote host.

https://chrisjhart.com/Windows-10-ssh-copy-id
https://askubuntu.com/questions/4830/easiest-way-to-copy-ssh-keys-to-another-machine

ECS and SMS staff: we can first SSHt0 entry.ecs.vuw.ac.nz andthen SSH to the remote host.

Again, who needs the toil of manually connecting when we can have SSH do the work for us by specifying
a "jump host"?

Jump Hosts

Connect to a remote via an arbitrary number of intermediates, using the -J flag. Example connecting to
a host which has only an IP address:

ssh -J entry.ecs.vuw.ac.nz username@1@.140.xx.yy

SSH Configuration

There are lots of useful options which can be configured, for example jump hosts and host names. Create a
~/.ssh/config file to define hosts (see: man ssh config). Example:

Host MyPC
ProxyJump entry.ecs.vuw.ac.nz
Hostname 10.140.xx.yy
User username

This allows connection by ssh MyPC and public key authentication functions transparently. No more
manual toil!

This also works with scp , no more copying files from remote to local with:

scp -p -J entry.ecs.vuw.ac.nz 10.140.xx.yy:<source> <destination>
instead we can write

scp MyPC:<source> <destination>

Using SSH Keys with GitLab and GitHub

SSH keys can be used with Git so repositories can be cloned with SSH. Combined with ssh-agent |, this
avoids the problem with cloning by HTTPS: having to re-enter your password on the command line for
access to the remote repository.

Documentation

Both GitLab and GitHub have great documentation on how to configure SSH access:

1. Use SSH keys to communicate with GitLab htips:/docs.gitlab.com/ee/user/ssh.himl
2. Adding a new SSH key to your GitHub account htips://docs.github.com/en/authentication/connecting-

to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account

Host Key Verification

You'll be asked to verify the host key fingerprint on first use, which are published on the GitLab and GitHub
web pages:

Raapoi Cluster https://vuw-research-computing.github.io/raapoi-docs/accessing_the_cluster

ECS GitLab Instance Configuration https://gitlab.ecs.vuw.ac.nz/help/instance configuration

GitLab.com Instance Configuration htips://gitlab.com/help/instance configuration

W=

GitHub's SSH key fingerprints htips://docs.github.com/en/authentication/keeping-your-account-and-

data-secure/githubs-ssh-key-fingerprints

Switching an existing clone from HTTPS to SSH

On the command line, with the working directory in the cloned repository, switch the remote URL to the SSH
URL(git@...)from the repository web page with:

git remote set-url origin git@...

You only need to do this if the existing remote URL is HTTPS (https://...), which you can check
with:

git remote -v

Appendix: Installing OpenSSH on Windows

OpenSSH is bundled with Windows but not installed by default. It's an easy process to install, you'll require
administrator privileges for the installation. For this workshop, install OpenSSH into PowerShell:

1. Get started with OpenSSH for Windows htips://learn.microsoft.com/en-us/windows-

server/administration/openssh/openssh_install firstuse?tabs=qui&pivots=windows-11

2. How To Install The OpenSSH Client On Windows https://www.itechtics.com/openssh-for-windows

Activating ssh-agent

Unfortunately, ssh-agent isn't enabled or running by default after installing OpenSSH. You'll need

https://docs.gitlab.com/ee/user/ssh.html
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://vuw-research-computing.github.io/raapoi-docs/accessing_the_cluster
https://gitlab.ecs.vuw.ac.nz/help/instance_configuration
https://gitlab.com/help/instance_configuration
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/githubs-ssh-key-fingerprints
https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse?tabs=gui&pivots=windows-11
https://www.itechtics.com/openssh-for-windows

administrator privileges to start the service so you can use the ssh-agent command in PowerShell:

1. Starting ssh-agent in Windows PowerShell hiips://peateasea.de/starting-ssh-agent-in-windows-
powershell

2. Starting ssh-agent on Windows 10 fails: "unable to start ssh-agent service, error :1058"
https://stackoverflow.com/questions/52113738/starting-ssh-agent-on-windows-10-fails-unable-to-start-

ssh-agent-service-erro

Copyright

Authors: James Quilty
Affiliation: School of Engineering and Computer Science, Victoria University of Wellington
Last updated: 2025-12-04

https://peateasea.de/starting-ssh-agent-in-windows-powershell
https://stackoverflow.com/questions/52113738/starting-ssh-agent-on-windows-10-fails-unable-to-start-ssh-agent-service-erro
http://creativecommons.org/licenses/by-sa/4.0/

