Introduction to Al & ML – Day 1

SNAP Workshop, 02/09/26

Emily O'Riordan emily.o'riordan@vuw.ac.nz

What is VUW-SNAP?

VUW-SNAP a Network Hub for Simulation, Numerical methods, Analytics, and Programming

Purpose

- Bring computational researchers together, community building
- Improve computational, numerical skills of researchers PG, Post-Doc & Academics
- > Promote our capabilities externally, raising our profile, facilitate external engagement (govt/industry/funding)

Website

https://vuw-snap.github.io/SNAP-decisions/

Email Addresses

- snap@vuw.ac.nz
- snap-students@vuw.ac.nz

Subscribe to SNAP mailing list

https://lists.vuw.ac.nz/mailman/listinfo/snap

Day 1: Intro & Supervised Learning

13:00 – 13:45: Introductions & Intro to ML

13:45 - 14:30: Regression models

14:30 - 14:40: Break

14:40 - 16:00: Classification models

Day 2: Ethics & Unsupervised Learning

13:00 - 13:20: Ethical considerations

13:20 - 13:50: Clustering

14:00 - 14:30: Dimensionality Reduction

14:30 - 14:35: Break

14:35 - 16:00: Neural Networks

Introductions

- Introduce yourself and your research
- How you're using Al day-to-day
- How you think you might be able to use Al in your research (if you aren't already!)

Introduction to Machine Learning

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP Learning

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

Data is 🔍

- Machine learning models are datahungry: they need a lot of data!
- Data is usually stored as a set of samples, made up of features.
 Sometimes we include a target variable.
- A sample can be a row in a CSV file, a picture, a sound, an astronomical object... whatever you can describe with a fixed set of quantitative traits.
- Data quality is vital. "Garbage in, garbage out"

Python packages

Scikit-learn

- Open Source
- Imported as sklearn
- We'll be using this!

Pytorch

- Owned by Meta
- Used in most ML research

Tensorflow

- Owned by Google
- Used in industry

Supervised vs Unsupervised Learning

Supervised learning:

- Each sample in the dataset has a target value
- Supervised learning models aim to predict this target value for new samples
- Example: a model to distinguish between images of cats and dogs
- We provide the model with images that have already been labelled as "cat" or "dog" so that it can learn from these examples.

Supervised vs Unsupervised Learning

Unsupervised learning:

- Samples in the dataset do not have a target value
- Unsupervised learning models aim to find patterns in the dataset
- Example: a model to group customers based on their spending and frequency habits
- We provide the model with unlabelled data (e.g., customer purchase histories), and it learns to group or cluster similar samples without being told the "right" answer.

Training, Validation, Testing

- Supervised ML models require us to split our data into distinct groups:
 - Training set (~80%)
 - Test set (~20%)
- We do this to ensure our model can generalise beyond the data it is trained on
 - If it can't, we call this overfitting
- In practise, we also use a validation set too...

Supervised Learning: Regression vs Classification

- We use regression algorithms when the labels are continuous
 - The house is \$500,000
 - An exam score, 83%
 - Blood pressure is 128 mmHg
- We use classification algorithms when the labels are discrete
 - The house is \$, \$\$, \$\$\$
 - An exam grade, A, B, C...
 - Blood pressure levels are normal, elevated, or high

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Regression

- Aim: learn a line of best fit
- Linear regression: y = mx + c
- Polynomial regression: $y = c_0 + c_1 x + c_2 x^2 + \dots$

PREDICT TRAFFIC JAMS

Google Colab

Go to https://colab.google/ and click new notebook

A complete version is here: https://tinyurl.com/VUW-SNAP-AI-1

Classification

- Aim of classification: group data into labelled categories (classes)
- Binary classification: two possible classes
 - An image is a cat or dog
 - Cell is cancerous or not
- Multi-class classification: > 2 possible classes
 - A galaxy is spiral, elliptical, or irregular
 - A rock is igneous, sedimentary, or metamorphic

Binary Classification

Multiclass Classification

Classification Models

 Decision Trees: similar to a flow diagram. Split classification problem into a binary tree of comparisons.

k-Nearest Neighbours (kNN):
 Classify a data point based on the class of its k nearest neighbours.

